Teori Komputasi, Implementasi & contoh komputasi modern

1.      Pengertian Komputasi

Komputasi dapat digambarkan sebagai suatu cara dalam memecahkan suatu persoalan atau masalah dari data input dengan menggunakan suatu algoritma. Komputasi biasanya dapat dilakukan dengan menggunakan pena atau kertas dengan bantuan suatu table. Namun dizaman yang semakin modern ini, kini komputas telah banyak dilakukan oleh masyarakat dengan menggunakan computer.

Pengertian komputasi secara umum merupakan suatu algoritma yang digunakan untuk memecahkan suatu masalah dari sebuah input data. Data input yang dimagsud adalah suatu data yang berasal dari luar lingkungan dari system. Komputasi juga merupakan bagian dari ilmu matematika dan teknik penyelesaian numeric serta penggunaan computer untuk menganalisis dan memecahkan berbagai permasalahan ilmu (sains).

2.      Teori Komputasi

Teori komputasi merupakan bagian dari cabang ilmu komputer dan matematika yang membahas mengenai solusi untuk penyelesaian suatu masalah yang dapat dipecahkan dengan model komputasi dengan menggunakan algoritma. Secara umum, terori komputasi dapat diibaratkan sebagai suatu cara untuk dapat menyelesaikan suatu permasalahan yang berasal dari data input dengan menggunakan suatu algoritma. 

Agar lebih jelas lagi mengenai komputasi, ada beberapa contoh komputasi pada bidangnya masing-masing. Diantaranya yaitu : 

A.    Teori Komputasi Di Bidang Ilmu Fisika
Komputasi digunakan dalam ilmu fisika sebagai alat menyelesaikan permasalahan medan magnet menggunakan komputasi fisika dengan menentukan besarnya medan magnet dan membandingkannya dengan panjang kawat. 

B.     Teori Komputasi Di Bidang Ilmu Kimia
Komputasi memungkinkan digunakan untuk peramalan sifat-sifat atom dan molekul. Komputasi juga dapat dilakukan untuk menjelajahi mekanisme reaksi dan menjelaskan pengamatan pada reaksi di laboratorium serta memahami sifat dan perubahan pada sistem mikroskopis melalui simulasi yang berlandaskan hukum interaksi yang ada pada sistem. 

C.     Teori Komputasi Di Bidang Ilmu Matematika
Penerapan teknik-teknik komputasi matematika meliputi metode numerik, scientifik computing, metode ielemen hingga metode beda, scientific data mining, scientific process control dan metode terkait lainnya untuk menyelesaikan masalah nyata berskala besar. 


D.    Teori Komputasi Di Bidang Ilmu Ekonomi
Mempelajari titik pertemuan antara ekonomi dan komputasi meliputi agent-based computational modelling, computational econometrics, dan statistic, komputasi keuangan, computational modelling of dynamic macroeconomic systems dan pengembangan alat bantu dalam pendidikan komputasi ekonomi. 

E.     Teori Komputasi Di Bidang Ilmu Biologi
Merupakan penerapan berupa aplikasi dari teknologi informasi dan ilmu komputer terhadap bidang biologi molekuler. 

F.      Teori Komputasi Di Bidang Ilmu Geografi
Komputasi awan didefinisikan sebagai sebuah model yang memungkinkan kenyamanan, akses on-demand terhadapa kumpulan sumber daya komputasi (contohnya jaringan, server, media penyimpanan, aplikasi dan layanan komputasi) yang konfigurasinya dapat dilakukan dengan cepat dan disertai sedikit usaha untuk mengelola dan berhubungan dengan penyedia layanan.

3.      Implementasi teori komputasi di berbagai bidang antara lain:
a)      Biologi 
Dalam implementasi komputasi modern di bidang biologi terdapat Bioinformatika, sesuai dengan asal katanya yaitu “bio” dan “informatika”, adalah gabungan antara ilmu biologi dan ilmu teknik informasi (TI). Pada umumnya, Bioinformatika didefenisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologi. Ilmu ini merupakan ilmu baru yang yang merangkup berbagai disiplin ilmu termasuk ilmu komputer, matematika dan fisika, biologi, dan ilmu kedokteran, dimana kesemuanya saling menunjang dan saling bermanfaat satu sama lainnya.
Istilah bioinformatics mulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan komputer dalam biologi. Namun demikian, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan algoritma untuk analisis sekuens biologis) sudah dilakukan sejak tahun 1960-an.
Ilmu bioinformatika lahir atas insiatif para ahli ilmu komputer berdasarkan artificial intelligence. Mereka berpikir bahwa semua gejala yang ada di alam ini bisa diuat secara artificial melalui simulasi dari gejala-gejala tersebut. Untuk mewujudkan hal ini diperlukan data-data yang yang menjadi kunci penentu tindak-tanduk gejala alam tersebut, yaitu gen yang meliputi DNA atau RNA. Bioinformatika ini penting untuk manajemen data-data dari dunia biologi dan kedokteran modern. Perangkat utama Bioinformatika adalah program software dan didukung oleh kesediaan internet

Perkembangan teknologi DNA rekombinan memainkan peranan penting dalam lahirnya bioinformatika. Teknologi DNA rekombinan memunculkan suatu pengetahuan baru dalam rekayasa genetika organisme yang dikenala bioteknologi. Perkembangan bioteknologi dari bioteknologi tradisional ke bioteknologi modren salah satunya ditandainya dengan kemampuan manusia dalam melakukan analisis DNA organisme, sekuensing DNA dan manipulasi DNA.
Sekuensing DNA satu organisme, misalnya suatu virus memiliki kurang lebih 5.000 nukleotida atau molekul DNA atau sekitar 11 gen, yang telah berhasil dibaca secara menyeluruh pada tahun 1977. Kemudia Sekuen seluruh DNA manusia terdiri dari 3 milyar nukleotida yang menyusun 100.000 gen dapat dipetakan dalam waktu 3 tahun, walaupun semua ini belum terlalu lengkap. Saat ini terdapat milyaran data nukleotida yang tersimpan dalam database DNA, GenBank di AS yang didirikan tahun 1982. Bioinformatika (bahasa Inggris: bioinformatics) adalah ilmu yang mempelajari penerapan teknik komputasional untuk mengelola dan menganalisis informasi biologis. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens DNA dan asam amino serta informasi yang berkaitan dengannya. Contoh topik utama bidang ini meliputi basis data untuk mengelola informasi biologis, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan bentuk struktur protein maupun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.
Bioinformatika ialah ilmu yang mempelajari penerapan teknik komputasi untuk mengelola dan menganalisis informasi hayati. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologi, terutama yang terkait dengan penggunaan sekuens DNA dan asam amino. Contoh topik utama bidang ini meliputi pangkalan data untuk mengelola informasi hayati, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan struktur protein atau pun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.
Bioinformatika pertama kali dikemukakan pada pertengahan 1980an untuk mengacu kepada penerapan ilmu komputer dalam bidang biologi. Meskipun demikian, penerapan bidang-bidang dalam bioinformatika seperti pembuatan pangkalan data dan pengembangan algoritma untuk analisis sekuens biologi telah dilakukan sejak tahun 1960an.
Membicarakan bioinformatika, tak dapat lepas dari proses lahirnya bidang tersebut. Sebagaimana diketahui, bioteknologi dan teknologi informasi merupakan dua di antara berbagai teknologi penting yang mengalami perkembangan signifikan dalam beberapa tahun terakhir ini. Bioteknologi berakar dari bidang biologi, sedangkan perkembangan teknologi informasi tak dapat dilepaskan dari matematika. Umumnya biologi dan matematika dianggap sebagai dua bidang yang sangat berbeda, dan sulit untuk dipadukan. Tetapi perkembangan ilmu pengetahuan terkini justru menunjukkan sebaliknya. Perpaduan antara biologi dan matematika, menghasilkan embrio suatu cabang pengetahuan baru yang memiliki masa depan yang menjanjikan di abad 21 ini. Embrio itulah yang bernama bioinformatika. Bioinformatika merupakan perpaduan harmonis antara teknologi informasi dan bioteknologi, yang dilatarbelakangi oleh ledakan data (data explosion) observasi biologi sebagai hasil yang dicapai dari kemajuan bioteknologi. Contohnya adalah pertumbuhan pesat database DNA pada GenBank. Genbank adalah database utama dalam biologi molekuler, yang dikelola oleh NCBI (National Center for Biotechnology Information) di AS.
Kemajuan teknik biologi molekuler dalam mengungkap sekuens biologi protein (sejak awal 1950an) dan asam nukleat (sejak 1960an) mengawali perkembangan pangkalan data dan teknik analisis sekuens biologi. Pangkalan data sekuens protein mulai dikembangkan pada tahun 1960an di Amerika Serikat, sementara pangkalan data sekuens DNA dikembangkan pada akhir 1970an di Amerika Serikat dan Jerman pada Laboratorium Biologi Molekuler Eropa (European Molecular Biology Laboratory).
Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang dapat diungkapkan pada 1980an dan 1990an. Hal ini menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, yang meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.
Perkembangan jaringan internet juga mendukung berkembangnya bioinformatika. Pangkalan data bioinformatika yang terhubungkan melalui internet memudahkan ilmuwan dalam mengumpulkan hasil sekuensing ke dalam pangkalan data tersebut serta memperoleh sekuens biologi sebagai bahan analisis. Selain itu, penyebaran program-program aplikasi bioinformatika melalui internet memudahkan ilmuwan dalam mengakses program-program tersebut dan kemudian memudahkan pengembangannya.

b)      Fisika
Implementasi komputasi moderndi bidang fisika ada Computational Physics yang mempelajari suatu gabungan antara Fisika,Komputer Sain dan Matematika Terapan untuk memberikan solusi pada “Kejadian dan masalah yang komplek pada dunia nyata” baik dengan menggunakan simulasi juga penggunaan algoritma yang tepat.

Pemahaman fisika pada teori, experimen, dan komputasi haruslah sebanding, agar dihasilkan solusi numerik dan visualizasi /pemodelan yang tepat untuk memahami masalah Fisika. Untuk melakukan perkerjaan seperti evaluasi integral,penyelesaian persamaan differensial, penyelesaian persamaan simultans, mem-plot suatu fungsi/data, membuat pengembangan suatu seri fungsi, menemukan akar persamaan dan bekerja dengan bilangan komplek yang menjadi tujuan penerapan fisika komputasi.
Banyak perangkat lunak ataupun bahasa yang digunakan, baik MatLab, Visual Basic, Fortran,Open Source Physics (OSP), Labview, Mathematica, dan lain sebagainya digunakan untuk pemahaman dan pencarian solusi numerik dari masalah-masalah pada Fisika komputasi. Suatu yang menjadi fokus perhatian kita disini adalah penggunaan visual basicsebagai alat bantu dalam pembelajaran dan pencarian solusi Fisika komputasi.

c)      Matematika
Implementasi komputasi modern di bidang matematika ada numerical analysis yaitu sebuah algoritma dipakai untuk menganalisa masalah - masalah matematika. Bidang analisis numerik sudah sudah dikembangkan berabad-abad sebelum penemuan komputer modern. Interpolasi linear sudah digunakan lebih dari 2000 tahun yang lalu. Banyak matematikawan besar dari masa lalu disibukkan oleh analisis numerik, seperti yang terlihat jelas dari nama algoritma penting seperti metode Newton, interpolasi polinomial Lagrange, eliminasi Gauss, atau metode Euler.


Buku-buku besar berisi rumus dan tabel data seperti interpolasi titik dan koefisien fungsi diciptakan untuk memudahkan perhitungan tangan. Dengan menggunakan tabel ini (seringkali menampilkan perhitungan sampai 16 angka desimal atau lebih untuk beberapa fungsi), kita bisa melihat nilai-nilai untuk diisikan ke dalam rumus yang diberikan dan mencapai perkiraan numeris sangat baik untuk beberapa fungsi. Karya utama dalam bidang ini adalah penerbitan NIST yang disunting oleh Abramovich dan Stegun, sebuah buku setebal 1000 halaman lebih. Buku ini berisi banyak sekali rumus yang umum digunakan dan fungsi dan nilai-nilainya di banyak titik. Nilai f-nilai fungsi tersebut tidak lagi terlalu berguna ketika komputer tersedia, namun senarai rumus masih mungkin sangat berguna.
Kalkulator mekanik juga dikembangkan sebagai alat untuk perhitungan tangan. Kalkulator ini berevolusi menjadi komputer elektronik pada tahun 1940. Kemudian ditemukan bahwa komputer juga berguna untuk tujuan administratif. Tetapi penemuan komputer juga mempengaruhi bidang analisis numerik, karena memungkinkan dilakukannya perhitungan yang lebih panjang dan rumit.

d)      Kimia
Implementasi komputasi modern di bidang kimia ada Computational Chemistry yaitu penggunaan ilmu komputer untuk  membantu menyelesaikan masalah kimia, contohnya penggunaan super komputer untuk menghitung struktur dan sifat molekul. Istilah kimia teori dapat didefinisikan sebagai deskripsi matematika untuk kimia, sedangkan kimia komputasi biasanya digunakan ketika metode matematika dikembangkan dengan cukup baik untuk dapat digunakan dalam program komputer. Perlu dicatat bahwa kata "tepat" atau "sempurna" tidak muncul di sini, karena sedikit sekali aspek kimia yang dapat dihitung secara tepat. Hampir semua aspek kimia dapat digambarkan dalam skema komputasi kualitatif atau kuantitatif hampiran.
Molekul terdiri atas inti dan elektron, sehingga diperlukan metode mekanika kuantum. Kimiawan komputasi sering berusaha memecahkan persamaan Schrödinger non-relativistik, dengan penambahan koreksi relativistik, walaupun beberapa perkembangan telah dilakukan untuk memecahkan persamaan Schrödinger yang sepenuhnya relativistik. Pada prinsipnya persamaan Schrödinger mungkin diselesaikan, baik dalam bentuk bergantung-waktu atau tak-bergantung-waktu, disesuaikan dengan masalah yang dikaji, tetapi pada praktiknya tidak mungkin kecuali untuk sistem yang amat kecil. Karena itu, sejumlah besar metode hampiran dikembangkan untuk mencapai kompromi terbaik antara ketepatan perhitungan dan biaya komputasi.

Dalam kimia teori, kimiawan dan fisikawan secara bersama mengembangkan algoritma dan program komputer untuk memungkinkan peramalan sifat-sifat atom dan molekul, dan/atau lintasan reaksi untuk reaksi kimia, serta simulasi sistem makroskopis. Kimiawan komputasi kebanyakan “sekedar” menggunakan program komputer dan metodologi yang ada dan menerapkannya untuk permasalahan kimia tertentu. Di antara sebagian besar waktu yang digunakan untuk hal tersebut, kimiawan komputasi juga dapat terlibat dalam pengembangan algoritma baru, maupun pemilihan teori kimia yang sesuai, agar diperoleh proses komputasi yang paling efisien dan akurat.
Terdapat beberapa pendekatan yang dapat dilakukan:Kajian komputasi dapat dilakukan untuk menemukan titik awal untuk sintesis dalam laboratorium.
1.      Kajian komputasi dapat digunakan untuk menjelajahi mekanisme reaksi dan menjelaskan pengamatan pada reaksi di laboratorium.
2.      Kajian komputasi dapat digunakan untuk memahami sifat dan perubahan pada sistem makroskopis melalui simulasi yang berlandaskan hukum-hukum interaksi yang ada dalam sistem.

Terdapat beberapa bidang utama dalam topik ini, antara lain:
·         Penyajian komputasi atom dan molekul
·         Pendekatan dalam penyimpanan dan pencarian spesi kimia (Basisdata kimia)
·         Pendekatan dalam penentuan pola dan hubungan antara struktur kimia dan sifat-sifatnya  (QSPR, QSAR).
·         Elusidasi struktur secara teoretis berdasarkan pada simulasi gaya-gaya
·         Pendekatan komputasi untuk membantu sintesis senyawa yang efisien
·         Pendekatan komputasi untuk merancang molekul yang berinteraksi lewat cara-cara yang khusus, khususnya dalam perancangan obat.
·         Simulasi proses transisi fase
·         Simulasi sifat-sifat bahan seperti polimer, logam, dan kristal (termasuk kristal cair).
Sejumlah paket perangkat lunak menyediakan berbagai metode kimia-kuantum. Di antara yang luas digunakan adalah:
·         Gaussian
·         Gamess
·         Q-Chem
·         ACES
·         Dalton
·         Spartan
·         Psi
·         PLATO (Package for Linear Combination of Atomic Orbitals)
·         MOLCAS
·         MOLPRO
·         MPQC
·         NWChem
·         Psi3
·         PC GAMESS
·         Spartan
·         TURBOMOLE

e)      Geografi 
Implementasi komputasi modern di bidang geografi diterapkan pada GIS (Geographic Information System) yang merupakan sistem informasi khusus yang mengelola data yang memiliki informasi spasial (bereferensi keruangan). Atau dalam arti yang lebih sempit, adalah sistem komputer yang memiliki kemampuan untuk membangun, menyimpan, mengelola dan menampilkan informasi berefrensi geografis, misalnya data yang diidentifikasi menurut lokasinya, dalam sebuah database. Para praktisi juga memasukkan orang yang membangun dan mengoperasikannya dan data sebagai bagian dari sistem ini.

Teknologi Sistem Informasi Geografis dapat digunakan untuk investigasi ilmiah, pengelolaan sumber daya, perencanaan pembangunan, kartografi dan perencanaan rute. Misalnya, GIS bisa membantu perencana untuk secara cepat menghitung waktu tanggap darurat saat terjadi bencana alam, atau GIS dapat digunaan untuk mencari lahan basah (wetlands) yang membutuhkan perlindungan dari polusi.
Komponen-komponen pendukung GIS terdiri dari lima komponen yang bekerja secara terintegrasi yaitu perangkat keras (hardware), perangkat lunak (software), data, manusia, dan metode yang dapat diuraikan sebagai berikut:

f)       Perangkat Keras (hardware)
Perangkat keras GIS adalah perangkat-perangkat fisik yang merupakan bagian dari sistem komputer yang mendukung analisis goegrafi dan pemetaan. Perangkat keras GIS mempunyai kemampuan untuk menyajikan citra dengan resolusi dan kecepatan yang tinggi serta mendukung operasioperasi basis data dengan volume data yang besar secara cepat. Perangkat keras GIS terdiri dari beberapa bagian untuk menginput data, mengolah data, dan mencetak hasil proses. Berikut ini pembagian berdasarkan proses :
·         Input data: mouse, digitizer, scanner
·         Olah data: harddisk, processor, RAM, VGA Card
·         Output data: plotter, printer, screening.

g)      Perangkat Lunak (software)
Perangkat lunak digunakan untuk melakukan proses menyimpan, menganalisa, memvisualkan data-data baik data spasial maupun non-spasial. Perangkat lunak yang harus terdapat dalam komponen software SIG adalah:
·         Alat untuk memasukkan dan memanipulasi data SIG
·         Data Base Management System (DBMS)
·         Alat untuk menganalisa data-data
·         Alat untuk menampilkan data dan hasil analisa

h)      Data
Pada prinsipnya terdapat dua jenis data untuk mendukung GIS yaitu :
·         Data Spasial
Data spasial adalah gambaran nyata suatu wilayah yang terdapat di permukaan bumi. Umumnya direpresentasikan berupa grafik, peta, gambar dengan format digital dan disimpan dalam bentuk koordinat x,y (vektor) atau dalam bentuk image (raster) yang memiliki nilai tertentu.
·         Data Non Spasial (Atribut)
Data non spasial adalah data berbentuk tabel dimana tabel tersebut berisi informasi- informasi yang dimiliki oleh obyek dalam data spasial. Data tersebut berbentuk data tabular yang saling terintegrasi dengan data spasial yang ada.

i)       Manusia
Manusia merupakan inti elemen dari GIS karena manusia adalah perencana dan pengguna dari GIS. Pengguna GIS mempunyai tingkatan seperti pada sistem informasi lainnya, dari tingkat spesialis teknis yang mendesain dan mengelola sistem sampai pada pengguna yang menggunakan GIS untuk membantu pekerjaannya sehari-hari.

j)       Ekonomi 
Terdapat Computational Economics yang mempelajari titik pertemuan antara ilmu ekonomi dan ilmu komputer mencakup komputasi keuangan, statistika, pemrograman yang di desain khusus untuk komputasi ekonomi dan pengembangan alat bantu untuk pendidikan ekonomi.

k)      Sosiologi 
Terdapat Computational Sosiology yaitu penggunaan metode komputasi dalam menganalisa fenomena sosial.
Contoh Perusahaan Yang Menggunakan Komputasi Modern
Seperti seperti yang disebutkan diatas, Penerapan komputasi modern sudah banyak diterapkan di berbagai bidang. Dalam hal ini kami akan membahas tentang website PT Kereta Api Indonesia (KAI) yang terdapat dalam bidang Ekonomi dan Transportasi. Pada tampilan awal web http://kereta-api.co.id/ terlihat website tersebut menggunakan template single page. Di halam terdapat penjelasan apa itu PT. KAI, Layanan apa saja yang tersedia, Informasi apa saja yang disediakan, dan Galeri foto.
Tampilan Tentang KAI
Tampilan Layanan Produk
Tampilan Informasi Media
Tampilan Galeri Foto
Untuk menu Reservasi Tiket, jika di klik kita akan menuju ke halaman single page yang lain, berisi tentang informasi yang berkaitan dengan pemesanan tiket, seperti yang terdapat pada tampilan berikut ini
Jika kita mengisi tampilan stasiun asal, stasiun tujuan, dan jenis tiketnya, saat kita mengklik tampilkan akan muncul daftar harga, jadwal berangkat, dan jadwal sampainya
Contoh yang lainnya adalah BMKG. BMKG (BADAN METEOROLOGI, KLIMATOLOGI, DAN GEOFISIKA) adalah salah satu perusahaan yang menerapkan komputasi modern
bmkg
BMKG mempunyai status sebuah Lembaga Pemerintah Non Departemen (LPND), dipimpin oleh seorang Kepala Badan. BMKG mempunyai tugas : melaksanakan tugas pemerintahan di bidang Meteorologi, Klimatologi, Kualitas Udara dan Geofisika sesuai dengan ketentuan perundang-undangan yang berlaku. Dalam melaksanakan tugas sebagaimana dimaksud diatas, Badan Meteorologi Klimatologi dan Geofisika menyelenggarakan fungsi :
  1. Perumusan kebijakan nasional dan kebijakan umum di bidang meteorologi, klimatologi, dan geofisika;
  2. Perumusan kebijakan teknis di bidang meteorologi, klimatologi, dan geofisika;
  3. Koordinasi kebijakan, perencanaan dan program di bidang meteorologi, klimatologi, dan geofisika;
  4. Pelaksanaan, pembinaan dan pengendalian observasi, dan pengolahan data dan informasi di bidang meteorologi, klimatologi, dan geofisika;
  5. Pelayanan data dan informasi di bidang meteorologi, klimatologi, dan geofisika;
    Penyampaian informasi kepada instansi dan pihak terkait serta masyarakat berkenaan dengan perubahan iklim;
  6. Penyampaian informasi dan peringatan dini kepada instansi dan pihak terkait serta masyarakat berkenaan dengan bencana karena factor meteorologi, klimatologi, dan geofisika;
  7. Pelaksanaan kerja sama internasional di bidang meteorologi, klimatologi, dan geofisika;
  8. Pelaksanaan penelitian, pengkajian, dan pengembangan di bidang meteorologi, klimatologi, dan geofisika;
  9. Pelaksanaan, pembinaan, dan pengendalian instrumentasi, kalibrasi, dan jaringan komunikasi di bidang meteorologi, klimatologi, dan geofisika;
  10. Koordinasi dan kerja sama instrumentasi, kalibrasi, dan jaringan komunikasi di bidang meteorologi, klimatologi, dan geofisika;
  11. Pelaksanaan pendidikan dan pelatihan keahlian dan manajemen pemerintahan di bidang meteorologi, klimatologi, dan geofisika;
  12. Pelaksanaan pendidikan profesional di bidang meteorologi, klimatologi, dan geofisika;
  13. Pelaksanaan manajemen data di bidang meteorologi, klimatologi, dan geofisika;
  14. Pembinaan dan koordinasi pelaksanaan tugas administrasi di lingkungan BMKG;
  15. Pengelolaan barang milik/kekayaan negara yang menjadi tanggung jawab BMKG;
  16. Pengawasan atas pelaksanaan tugas di lingkungan BMKG;
  17. Penyampaian laporan, saran, dan pertimbangan di bidang meteorologi, klimatologi, dan geofisika.
  18. Dalam melaksanakan tugas dan fungsinya BMKG dikoordinasikan oleh Menteri yang bertanggung jawab di bidang perhubungan.
dengan membuka situs bmkg, kita dapat mengetahui perkiraan cuaca dengan cepat dan tepat, informasi iklim, kualitas udara, dan gempabumi & tsunami. contoh dibawah ini adalah contoh dari prakiraan cuaca
Komputasi pada web BMKG adalah dimana situs BMKG akan melakukan komputasi terhadap keadaan yang berlangsung saat itu juga.

Referensi


Comments

Popular Posts